Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres
نویسندگان
چکیده
Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm(-3) in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g(-1). This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.
منابع مشابه
An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene.
Graphene with a large specific surface area and high conductivity has a large specific capacitance. However, its volumetric capacitance is usually very low because the restacking of 2D graphene sheets leads to the loss of the large ion-accessible surface area. Here we report squeezable bicontinuous nanoporous nitrogen-doped graphene, which is extremely flexible and can tolerate large volume con...
متن کاملCost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملHigh oxygen-reduction activity and durability of nitrogen and sulfur dual doped porous carbon microspheres.
Nitrogen and sulfur co-doped monodisperse carbon microspheres (NS-CMSs) have been successfully synthesized as a new kind of outstanding metal-free ORR catalyst through a one-pot solvothermal reaction. The as-synthesized heteroatom-doped CMSs have been systematically characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy ...
متن کاملA novel adenine-based metal organic framework derived nitrogen-doped nanoporous carbon for flexible solid-state supercapacitor
In this article, we have synthesized a series of nitrogen-doped nanoporous carbon (NPC) from metal organic framework of UiO-66 with different ratios of adenine and 1,4-benzendicarboxylate (H2BDC) coated on carbon nanotube film (CNTF) to obtain a flexible porous electrode (NPC/CNTF). It is worth noting that the introduction of adenine at different ratios did not change the structure of UiO-66. W...
متن کاملPreparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors
In this study, a new graphene ceramic composite (GCC) was prepared based on the reduced grapheneoxide (rGO) doped in sol-gel derived silica. The GCC was prepared by dispersing rGO nanosheets intothe sol-gel precursors containing methyl triethoxysilane, methanol and hydrochloric acid solution.During an acid catalyzed hydrolyze reaction and gelation proc...
متن کامل